2020年3月18日 / 最終更新日時 : 2020年4月9日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 31.池原の「疑似複製」説 原始前生物環境の初期段階から、短鎖ペプチド複合体の機能が短いペプチドをどのように複製したかについて、私なりの考えを述べてみたい。タンパク性物質の複製に関する記述の代表的なものとしては、池原の先駆的な「疑似複製」説がある。これは私も共鳴する部分があり、まずはそれについての私見を述べておく。 「複製」とは 先に述べたように、短鎖ペプチドが複合体を形成する際、異なるアミノ酸配列でも類似した局部... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年5月2日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 32.短鎖ペプチド複合体形成について振り返る 原始前生物環境の初期の頃は、このような「疑似複製」やそれに類するものに依存すればよかったが、次第に短鎖ペプチド複合体の構造・機能分化による多様化が進み、固有の複合体を模してつくらなければならないという、複製の必要性が生じたことも考えられる。私は、原始前生物環境の短鎖ペプチド複合体は二段階で形成されたと考えている。 第一段階 第一段階は、短鎖ペプチドの原始前生物環境での自然生成である。現在の研究で... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月9日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 33.短鎖ペプチド複合体と天然タンパク質 短鎖ペプチド複合体の複製の第一段階は、すべての短鎖ペプチド複合体形成に共通してもちいられる、一定の多様な短鎖ペプチド構成体の生成と蓄積であった。第二段階は、それらの短鎖ペプチド構成体の会合による配置が極小エネルギー則に従って進行し、自律的に固有の立体構造をもつ複合体構造を形成するための、「個別短鎖ペプチド複合体獲得装置(仮称)」の存在にあると考えられる。この形成過程は、天然タンパク質の構造形成に... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月9日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 34.短鎖ペプチド構成体の複製と鋳型的多酵素複合体系機構 上述したように、原始前生物環境の初期の頃には、雑多に自然生成された短鎖ペプチドが次第に最小限の短鎖ペプチド構成体に収束されたと考えられる。短鎖ペプチド複合体は短鎖ペプチド構成体が特異的に複製されれば、立体構造は自動的に複製されることから、この構成体の種類が最小限度になったことは、次に起こる短鎖ペプチドの複製にとって経済性からみて重要なことであったと私は考えている。この最小限に収束され... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月10日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 35.原始前生物環境での短鎖ペプチド構成体の複製条件 遺伝子が存在しない原始前生物環境下での複製 しかし、ここで重大な疑問が生じる。現存のNRPs系を構成する一連のタンパク質は、遺伝子の情報に基づいてつくられていることである。即ち、鋳型的多酵素複合体系にある開始もしくは伸長モジュールなどに鋳型として結合するアミノ酸単体は、遺伝子の情報に基づいて、複製対象のペプチド性抗生物質などのアミノ酸配列順になるように結合する。NRPs系を構成する全てのタン... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月11日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 36.鋳型的多短鎖ペプチド複合体系の創生 触媒性短鎖ペプチド複合体の存在 原始前生物環境で、鋳型的多短鎖ペプチド複合体系を創生するための最初の課題は、短鎖ペプチド構成体のアミノ酸配列にあるアミノ酸残基を認識する物質の存在を確認することである。その認識した物質の結合部位に同じ側鎖をもつアミノ酸単体が並べば、原理的には鋳型的多短鎖ペプチド複合体系が成立することになる。そのため、最初に考えるべきことは、短鎖ペプチド構成体と結合して、そのア... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月13日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 37.タンパク性アダプターが関与する短鎖ペプチド構成体の複製仮説 触媒性短鎖ペプチド複合体の構成体認識部位の構成体が解離した後の窪みに、アミノ酸単体がほとんど結合しない、あるいは他のアミノ酸単体と競合し識別できないほど特異性が低い場合、同じ側鎖をもつアミノ酸単体の結合は不確実で、正確に結合できなければ複製は不能となる。ここではこの場合を考慮し、別の鋳型形成の仕組みを考えてみる。 転移RNAアダプター 私はその解決策のヒントとして、タンパク質生合成に介在する転移... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月17日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 38.タンパク性アダプターによる複製仮説のまとめ 鋳型的多短鎖ペプチド複合体系の形成 繰り返し述べると、アミノ酸配列の情報をもっている短鎖ペプチド構成体自体が伝令RNAの役割を持ち、構成体の個々のアミノ酸残基がコドンに相当し、このコドンに相当する構成体の個々のアミノ酸残基を認識する触媒性短鎖ペプチド複合体側の認識部位を構成する複数のアミノ酸残基を、アンチコドンに相当するものと考えた。このアンチコドンをもつ触媒性短鎖ペプチド複合体とは異なる... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月17日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 39.触媒性短鎖ペプチド複合体の認識部位のグループ単位という概念 上述したなかで、短鎖ペプチド構成体の個々のアミノ酸残基に対する触媒性短鎖ペプチド複合体の認識部位のアミノ酸残基構造は、転移RNAアダプターのアンチコドンに相当するという考えを述べたが、それをもう少し詳細に述べてみたい。 複数のアミノ酸の関与 私がコドンと考えた短鎖ペプチド構成体の個々のアミノ酸残基と結合する構成体認識部位の構造をみると、コドン1個のアミノ酸残基に対して、構成体認識部位のアミノ酸残... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月17日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 40.コドンを持たないアミノ酸の意義と二つの系の共通点 コドンを持たないアミノ酸 なお、現在でも依然として細菌がNRPs系で特殊なペプチド性抗生物質を複製しているのは、D-アミノ酸やオルニチンのようなコドンをもたないアミノ酸が含まれており、リボソーム介在系が使用できないからであると考えられる。このことからも、原始前生物環境で、最初はD-アミノ酸やL-オルニチンのようなアミノ酸類やその他の成分をペプチドに取り込むことが可能なNRPs系が創生され、はるか... 続きを読むにほんブログ村