コンテンツへスキップ ナビゲーションに移動

蒼き地球の誕生〜短鎖ペプチド仮説〜新たなるタンパク質ワールド仮説

  • HomeHome
  • はじめにIntroduction
  • 生命の起源を考えるLife of Origin
  • 第一部 原始無生物環境における化学進化Part One
  • 第二部 生命の誕生へPart Two
  • 著者紹介Author
  • 科学の広場
  • 問い合わせContact

高分子核酸

  1. HOME
  2. 高分子核酸
2020年3月14日 / 最終更新日時 : 2020年5月11日 Hiroshi Masuda 第1部  原始無生物環境における化学進化

1.「RNAワールド」仮説に対する疑念

 「RNAワールド」仮説に対する疑念 「生命の起源」に関して私の「タンパク質ワールド」仮説を述べてみたい。これまでに「生命の起源」に関する諸説が数多く発表されてきているが、現在のその到達点はなんとなく「RNAワールド」仮説であるかのような印象を受ける。「RNA ワールド」仮説の発端になったのは、何と言っても1980年代のチェックらの研究によるRNAが生体触媒機能をもっているという衝撃的な発見であっ... 続きを読む

にほんブログ村

2020年3月18日 / 最終更新日時 : 2020年4月9日 Hiroshi Masuda 第1部  原始無生物環境における化学進化

34.短鎖ペプチド構成体の複製と鋳型的多酵素複合体系機構

  上述したように、原始前生物環境の初期の頃には、雑多に自然生成された短鎖ペプチドが次第に最小限の短鎖ペプチド構成体に収束されたと考えられる。短鎖ペプチド複合体は短鎖ペプチド構成体が特異的に複製されれば、立体構造は自動的に複製されることから、この構成体の種類が最小限度になったことは、次に起こる短鎖ペプチドの複製にとって経済性からみて重要なことであったと私は考えている。この最小限に収束され... 続きを読む

にほんブログ村

2020年3月18日 / 最終更新日時 : 2020年4月10日 Hiroshi Masuda 第1部  原始無生物環境における化学進化

35.原始前生物環境での短鎖ペプチド構成体の複製条件

 遺伝子が存在しない原始前生物環境下での複製 しかし、ここで重大な疑問が生じる。現存のNRPs系を構成する一連のタンパク質は、遺伝子の情報に基づいてつくられていることである。即ち、鋳型的多酵素複合体系にある開始もしくは伸長モジュールなどに鋳型として結合するアミノ酸単体は、遺伝子の情報に基づいて、複製対象のペプチド性抗生物質などのアミノ酸配列順になるように結合する。NRPs系を構成する全てのタン... 続きを読む

にほんブログ村

2020年3月18日 / 最終更新日時 : 2020年4月17日 Hiroshi Masuda 第1部  原始無生物環境における化学進化

38.タンパク性アダプターによる複製仮説のまとめ

   鋳型的多短鎖ペプチド複合体系の形成  繰り返し述べると、アミノ酸配列の情報をもっている短鎖ペプチド構成体自体が伝令RNAの役割を持ち、構成体の個々のアミノ酸残基がコドンに相当し、このコドンに相当する構成体の個々のアミノ酸残基を認識する触媒性短鎖ペプチド複合体側の認識部位を構成する複数のアミノ酸残基を、アンチコドンに相当するものと考えた。このアンチコドンをもつ触媒性短鎖ペプチド複合体とは異なる... 続きを読む

にほんブログ村

2020年3月18日 / 最終更新日時 : 2020年4月17日 Hiroshi Masuda 第1部  原始無生物環境における化学進化

39.触媒性短鎖ペプチド複合体の認識部位のグループ単位という概念

上述したなかで、短鎖ペプチド構成体の個々のアミノ酸残基に対する触媒性短鎖ペプチド複合体の認識部位のアミノ酸残基構造は、転移RNAアダプターのアンチコドンに相当するという考えを述べたが、それをもう少し詳細に述べてみたい。  複数のアミノ酸の関与 私がコドンと考えた短鎖ペプチド構成体の個々のアミノ酸残基と結合する構成体認識部位の構造をみると、コドン1個のアミノ酸残基に対して、構成体認識部位のアミノ酸残... 続きを読む

にほんブログ村

2020年3月18日 / 最終更新日時 : 2020年4月17日 Hiroshi Masuda 第1部  原始無生物環境における化学進化

43.“青い惑星”をつくった短鎖ペプチド

   第一部 総括~短鎖ペプチドの出現  ここでは、第1部で述べたことについて総括する。  私は、自然生成された短鎖ペプチドのすべてが複合体を形成するとは限らないと考えている。僅かな有効なペプチドだけが構成ブロックになり、複合体を構築する能力をもち、それらが離合集散を繰り返しながら、ペプチド同士が親和力と特異性をさらに高めながら会合し、安定な短鎖ペプチド複合体構造を構築する。さらに他の物質と結合す... 続きを読む

にほんブログ村

2020年3月23日 / 最終更新日時 : 2020年5月11日 Hiroshi Masuda 第2部 生命の誕生へ

1.これまでの総括とこれからの展望

第1部では、原始前生物環境でのタンパク性物質の出現と、それに伴う分子進化によって生命物質を含む有機物質の創生について述べた。この第2部は、それらの物質を基盤とした生命の誕生と生物進化について述べることにする。 生物進化を研究する方法 その前に、生物進化を研究する方法を考えてみたい。現在は化石や生物種間の遺伝子解析などを最大限駆使し、科学的な帰納的推理を展開した生物進化の方法論が成立している。しかし... 続きを読む

にほんブログ村

2020年3月27日 / 最終更新日時 : 2020年4月17日 Hiroshi Masuda 第2部 生命の誕生へ

2.短鎖ペプチド起源説

 原始地球環境では、アミノ酸の直接熱重合によってミクロスフェアのような高分子のタンパク性物質が生成していたと考えられているが、アミノ酸が自然生成したのとは異なる原始地球環境下の海底の熱水噴火口で、短いペプチドが出現したことが有力視されている。私が考えたのは、この短鎖ペプチドが段階的な会合によって巨大化し、その過程で多様な機能を獲得し、天然タンパク質の原型が形成されることであった。しかもその場合、複... 続きを読む

にほんブログ村

2020年3月27日 / 最終更新日時 : 2020年4月18日 Hiroshi Masuda 第2部 生命の誕生へ

11.原始細胞での新しい遺伝装置の創生―DNAの自己複製の原理の萌芽

 生命誕生の最大のイベントの一つとして考えられるのが、原始前生物環境でつくられた多様な短鎖ペプチド複合体のようなタンパク性物質の遺伝情報が、原始袋を経て原始細胞にどのようにして伝達され、収納されたかである。さらに、原始前生物環境の後半になると遺伝情報が多量になり、多量の容量の遺伝情報を収納でき、これまでのものとは全く異なる遺伝装置を緊急につくる必要性が生じたと考えられる。結果として、遺伝情報の収... 続きを読む

にほんブログ村

2020年3月27日 / 最終更新日時 : 2020年4月18日 Hiroshi Masuda 第2部 生命の誕生へ

12.高分子核酸の構造

  RNAとDNAの構造  高分子核酸は塩基と糖とリン酸基で構成され、その構成糖がリボースであればリボ核酸(RNA)が、デオキシリボースではデオキシリボ核酸(DNA)がそれぞれ形成される。RNAはリボースとリン酸のホスホジエステル結合で骨格を形成し、塩基は糖と結合して分子内でところどころ相補的に結合することで、複雑で多様な構造になっている。中には触媒的機能をもつものも現れた。DNAは外側にデオキシ... 続きを読む

にほんブログ村

投稿ナビゲーション

  • 固定ページ 1
  • 固定ページ 2
  • »

カテゴリー

索引

20種類のアミノ酸 Anfinsen disordered structure NRPs NRPs系 アミノアシルtRNAシンテターゼ アミノ酸 アミノ酸残基数 アンチコドン イントロン タンパク質ワールド ペプチド伸長反応 ペプチド結合 ミクロスフェア リボソーム 伸長モジュール 共有結合 分子進化 天然タンパク質 巨大な複合体 抗体タンパク 擬態思想 断片化思想 新生ポリペプチド鎖 核酸 池原健二 無秩序構造 生命の起源 生命誕生時 疎水結合 疑似複製 短鎖ペプチド 短鎖ペプチド複合体 短鎖ペプチド起源説 自由エネルギー 複製 超二次構造 遺伝暗号 遺伝装置 酵素タンパク 非リボソーム性ペプチド合成 非共有結合 高分子核酸 GADV RNA

増田 宏志
元帯広畜産大学 畜産学部畜産科学科
畜産生命科学講座(細胞分子制御科学分野) 教授
東京都三鷹市在住
Email: hmasuda@peptideworld-masuda.net

Copyright © 蒼き地球の誕生〜短鎖ペプチド仮説〜新たなるタンパク質ワールド仮説 All Rights Reserved.

Powered by WordPress with Lightning Theme & VK All in One Expansion Unit by Vektor,Inc. technology.

MENU
  • Home
  • はじめに
  • 生命の起源を考える
  • 第一部 原始無生物環境における化学進化
  • 第二部 生命の誕生へ
  • 著者紹介
  • 科学の広場
  • 問い合わせ