2020年3月17日 / 最終更新日時 : 2020年4月26日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 9.短鎖ペプチドと物質との選択的結合 二つの結合要件 まず、短鎖ペプチドと物質との選択的な結合について考えてみたい。先に述べたように、アミノ酸残基が十数個以下の短鎖ペプチドは揺らぎが生じ、複数の遷移構造になることが明らかにされている。それは、その骨格構造の回転の自由度が大きいことと、安定状態や準安定状態の自由エネルギー値にあまり差がないからである。このような、複数の構造をもつ同じアミノ酸配列の短鎖ペプチドが対象物質と結合... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月6日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 10.短鎖ペプチド複合体の形成 結合する相手はすべての有機物質が対象になるが、その中には他の短鎖ペプチドも当然含まれており、この場合に限って考えてみよう。二つの短鎖ペプチドが特異的に会合すると、短鎖ペプチドの複合体が形成されることになる。さらに、その複合体を中核にして、さらに別の短鎖ペプチドが会合し、その数を増やしていくと大きな複合体を形成すると考えられる。私は、その過程で複合体の内部構造の共有結合や非共有結合の再編が繰り返え... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月7日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 12.短鎖ペプチドである必然性 短鎖ペプチド複合体が高い結合特異性をもつということは、その複合体が原則的に一つの物質のみと結合することを意味する。そうでなければ、高度の機能を維持することができないからである。それは、短鎖ペプチドとその複合体がすべての物質の種類や数だけ存在しなければならないことを意味する。地球上には膨大な種類の物質が存在するが、その物質に対応するために、それ以上の種類や数の短鎖ペプチドやその複合体を産出しなけれ... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月8日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 13.断片化思想 短鎖ペプチドの特異的結合能力 上述したように、短鎖ペプチドとその複合体が原始地球環境に存在するすべての有機物質とそれぞれ特異的に結合する能力を獲得する過程において、将来出現するであろう未知の有機物質への対処を想定し、事前に準備を整えておくという思想が芽生えたのではないか、と私は考えている。このような考えに至ったのは、動物細胞の免疫系における抗体タンパクの生成機構を知ってからである。免疫系では... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年5月11日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 16.短鎖ペプチドの二段階分子進化 次に、短鎖ペプチドの分子進化は二段階にわたっているという私の考えについて、述べてみたい。短鎖ペプチド複合体の複製については後述するが、その際、自然は経済的観点から短鎖ペプチドを最小限の種類に制限する必要があったと考えている。そのため、同一のペプチドであっても、その遷移状態の複数の揺らぎ構造さえ利用してしまうほどの徹底ぶりが想像できる。 進化の過程 第一段階の短鎖ペプチド生成は、原始地球の自然環境... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月8日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 18.“個別短鎖ペプチド複合体獲得装置(仮称)” 獲得装置の創成 短鎖ペプチド複合体構造が一旦形成され有利な機能が獲得されると、それを絶えず再生産できるような機構がどうしても必要になってくる。私は、多様でそれぞれ固有の構造と機能をもつ短鎖ペプチド複合体が、試行錯誤の末に創生された場合、どの種類の短鎖ペプチド構成体がどのような配置をしたらどのような構造になり、それがどのような機能をもつかという独自の情報を、自らの構造の中に記憶していたに違いないと... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月9日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 19.タンパク質の折り畳み機構 Anfinsenドグマには、「天然タンパク質の一次構造は高次構造形成をかなりの程度まで自律的に規定する情報をもっている」とある。このドグマに従えば、天然タンパク質であるかどうかは、可逆的に折り畳みがおきるかどうかを確認すればよいことになる。私がこの折り畳みの存在をはじめて知ったのは、Anfinsenらがノーベル化学賞を受賞した少し前頃であった。この不思議な現象について私なりに述べてみたい。 本題に... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月9日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 21.エネルギー曲面 折り畳み過程でのエネルギー局面 ここまでタンパク質フォルデイングファンネルの概略について述べたが、折り畳み過程でのエネルギー曲面(energy landscape)は最初の構造が無秩序のため自由エネルギーの極小値が大きく、エントロピーも大きいが、構造が折り畳まれるに従い自由エネルギーが低下し、構造が秩序だってくることでエントロピーも小さくなる。ついには折り畳みが完結すると自由エネルギーもエントロ... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月9日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 22.二次構造の構築原理 折り畳みの観点から見たタンパク質の構造 ここからは、タンパク質の構造を折り畳みの観点から述べることにする。タンパク質構造の一般的な性質として、構造の表面は相対的に親水性アミノ酸が多く、水分子との接触環境になっており、内部は疎水性アミノ酸が多く、構造の安定化に寄与する疎水的環境になっているといわれている。ただし、主鎖そのものは親水性アミノ酸であっても、ペプチド単位では水素結合の供与基であるNHが、... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月9日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 23.モジュールとドメイン 天然タンパク質の構成単位として、モジュールやドメインなどの概念について述べておきたい。両者には明確な区別はなく、ともに遺伝子のエキソンと対応する構造と機能の単位である。アミノ酸残基数に違いがあるようで、モジュールは20~40個ほどの残基で、ドメインは通常50~200個ほどから構成される。遺伝子の関与が全くない原始前生物環境期では、短鎖ペプチド複合体形成過程の各段階を示しているにすぎず、いずれも固... 続きを読むにほんブログ村