2020年3月14日 / 最終更新日時 : 2020年5月11日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 1.「RNAワールド」仮説に対する疑念 「RNAワールド」仮説に対する疑念 「生命の起源」に関して私の「タンパク質ワールド」仮説を述べてみたい。これまでに「生命の起源」に関する諸説が数多く発表されてきているが、現在のその到達点はなんとなく「RNAワールド」仮説であるかのような印象を受ける。「RNA ワールド」仮説の発端になったのは、何と言っても1980年代のチェックらの研究によるRNAが生体触媒機能をもっているという衝撃的な発見であっ... 続きを読むにほんブログ村
2020年3月14日 / 最終更新日時 : 2020年5月11日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 2.池原の[GADV]タンパク質の「疑似複製」仮説 タンパク質」仮説によれば、そのヒントになったのは遺伝暗号の関連で、現存する生物の遺伝子のGC含量が大きく変化してもタンパク質構造があまり変化しないという事実から、GNC遺伝暗号でコードされる4種のアミノ酸であるGly, Ala, Asp, Valに注目したという。これらのアミノ酸はいずれも簡単な構造をもち、原始地球環境で自然生成されると見なされているものばかりである。さらに、この4種のアミノ酸が... 続きを読むにほんブログ村
2020年3月15日 / 最終更新日時 : 2020年4月7日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 4.原始地球環境での有機物、特にアミノ酸類の出現 「原子前生物環境」の定義 はじめに、本書に頻繁に登場する「原始前生物環境」という言葉は、大雑把に原始地球の自然環境条件下で有機物質が出現してから生命誕生に至る時間経過を意味するものである。地球誕生から原始前生物環境を経て生命誕生までの経過に要した時間は、数億から十数億年だといわれている。この原始前生物環境の初期に多様な有機物質がどのように生成されたかについては、ユリーとミラーの有名な原始地球の大気... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月9日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 34.短鎖ペプチド構成体の複製と鋳型的多酵素複合体系機構 上述したように、原始前生物環境の初期の頃には、雑多に自然生成された短鎖ペプチドが次第に最小限の短鎖ペプチド構成体に収束されたと考えられる。短鎖ペプチド複合体は短鎖ペプチド構成体が特異的に複製されれば、立体構造は自動的に複製されることから、この構成体の種類が最小限度になったことは、次に起こる短鎖ペプチドの複製にとって経済性からみて重要なことであったと私は考えている。この最小限に収束され... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月10日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 35.原始前生物環境での短鎖ペプチド構成体の複製条件 遺伝子が存在しない原始前生物環境下での複製 しかし、ここで重大な疑問が生じる。現存のNRPs系を構成する一連のタンパク質は、遺伝子の情報に基づいてつくられていることである。即ち、鋳型的多酵素複合体系にある開始もしくは伸長モジュールなどに鋳型として結合するアミノ酸単体は、遺伝子の情報に基づいて、複製対象のペプチド性抗生物質などのアミノ酸配列順になるように結合する。NRPs系を構成する全てのタン... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月17日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 38.タンパク性アダプターによる複製仮説のまとめ 鋳型的多短鎖ペプチド複合体系の形成 繰り返し述べると、アミノ酸配列の情報をもっている短鎖ペプチド構成体自体が伝令RNAの役割を持ち、構成体の個々のアミノ酸残基がコドンに相当し、このコドンに相当する構成体の個々のアミノ酸残基を認識する触媒性短鎖ペプチド複合体側の認識部位を構成する複数のアミノ酸残基を、アンチコドンに相当するものと考えた。このアンチコドンをもつ触媒性短鎖ペプチド複合体とは異なる... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月17日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 39.触媒性短鎖ペプチド複合体の認識部位のグループ単位という概念 上述したなかで、短鎖ペプチド構成体の個々のアミノ酸残基に対する触媒性短鎖ペプチド複合体の認識部位のアミノ酸残基構造は、転移RNAアダプターのアンチコドンに相当するという考えを述べたが、それをもう少し詳細に述べてみたい。 複数のアミノ酸の関与 私がコドンと考えた短鎖ペプチド構成体の個々のアミノ酸残基と結合する構成体認識部位の構造をみると、コドン1個のアミノ酸残基に対して、構成体認識部位のアミノ酸残... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月17日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 43.“青い惑星”をつくった短鎖ペプチド 第一部 総括~短鎖ペプチドの出現 ここでは、第1部で述べたことについて総括する。 私は、自然生成された短鎖ペプチドのすべてが複合体を形成するとは限らないと考えている。僅かな有効なペプチドだけが構成ブロックになり、複合体を構築する能力をもち、それらが離合集散を繰り返しながら、ペプチド同士が親和力と特異性をさらに高めながら会合し、安定な短鎖ペプチド複合体構造を構築する。さらに他の物質と結合す... 続きを読むにほんブログ村
2020年3月23日 / 最終更新日時 : 2020年5月11日 Hiroshi Masuda 第2部 生命の誕生へ 1.これまでの総括とこれからの展望 第1部では、原始前生物環境でのタンパク性物質の出現と、それに伴う分子進化によって生命物質を含む有機物質の創生について述べた。この第2部は、それらの物質を基盤とした生命の誕生と生物進化について述べることにする。 生物進化を研究する方法 その前に、生物進化を研究する方法を考えてみたい。現在は化石や生物種間の遺伝子解析などを最大限駆使し、科学的な帰納的推理を展開した生物進化の方法論が成立している。しかし... 続きを読むにほんブログ村
2020年3月27日 / 最終更新日時 : 2020年4月17日 Hiroshi Masuda 第2部 生命の誕生へ 2.短鎖ペプチド起源説 原始地球環境では、アミノ酸の直接熱重合によってミクロスフェアのような高分子のタンパク性物質が生成していたと考えられているが、アミノ酸が自然生成したのとは異なる原始地球環境下の海底の熱水噴火口で、短いペプチドが出現したことが有力視されている。私が考えたのは、この短鎖ペプチドが段階的な会合によって巨大化し、その過程で多様な機能を獲得し、天然タンパク質の原型が形成されることであった。しかもその場合、複... 続きを読むにほんブログ村