2020年3月14日 / 最終更新日時 : 2020年5月11日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 1.「RNAワールド」仮説に対する疑念 「RNAワールド」仮説に対する疑念 「生命の起源」に関して私の「タンパク質ワールド」仮説を述べてみたい。これまでに「生命の起源」に関する諸説が数多く発表されてきているが、現在のその到達点はなんとなく「RNAワールド」仮説であるかのような印象を受ける。「RNA ワールド」仮説の発端になったのは、何と言っても1980年代のチェックらの研究によるRNAが生体触媒機能をもっているという衝撃的な発見であっ... 続きを読むにほんブログ村
2020年3月14日 / 最終更新日時 : 2020年5月11日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 2.池原の[GADV]タンパク質の「疑似複製」仮説 タンパク質」仮説によれば、そのヒントになったのは遺伝暗号の関連で、現存する生物の遺伝子のGC含量が大きく変化してもタンパク質構造があまり変化しないという事実から、GNC遺伝暗号でコードされる4種のアミノ酸であるGly, Ala, Asp, Valに注目したという。これらのアミノ酸はいずれも簡単な構造をもち、原始地球環境で自然生成されると見なされているものばかりである。さらに、この4種のアミノ酸が... 続きを読むにほんブログ村
2020年3月15日 / 最終更新日時 : 2020年5月20日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 3.原始タンパク様物質の合成 「タンパク質ワールド」仮説を唱える立場から、まずは原始地球環境でタンパク質の創生についての概要を述べておきたい。原始タンパク様物質の合成には、大別すると「直接的高分子合成説」と「ペプチドの段階的合成説」の二通りが存在したと推定する。 原子タンパク様物質を創生する2つの合成説 「直接的高分子合成説」は、アミノ酸混合液を加熱重縮合反応することで直接ミクロスフェアのような高分子のタンパク様物質が一段階で... 続きを読むにほんブログ村
2020年3月15日 / 最終更新日時 : 2020年4月7日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 4.原始地球環境での有機物、特にアミノ酸類の出現 「原子前生物環境」の定義 はじめに、本書に頻繁に登場する「原始前生物環境」という言葉は、大雑把に原始地球の自然環境条件下で有機物質が出現してから生命誕生に至る時間経過を意味するものである。地球誕生から原始前生物環境を経て生命誕生までの経過に要した時間は、数億から十数億年だといわれている。この原始前生物環境の初期に多様な有機物質がどのように生成されたかについては、ユリーとミラーの有名な原始地球の大気... 続きを読むにほんブログ村
2020年3月17日 / 最終更新日時 : 2020年4月26日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 5.短鎖ペプチドの出現 先に述べたように、原始地球環境でアミノ酸類が多くの有機物質とともに存在し、海洋中に豊富に蓄積されていたことは、原始地球環境を仮想モデルにしたミラーの放電実験に基づく自然生成や、惑星空間から飛来するアミノ酸類が存在する隕石の研究などで支持されている。しかし、大切なことは、ミラーの実験や隕石にはアミノ酸が重合してできるペプチド類が痕跡程度も見いだされていないことである。これは、ペプチド類が原始地球環境... 続きを読むにほんブログ村
2020年3月17日 / 最終更新日時 : 2020年5月11日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 6.短鎖ペプチド鎖の構造 原始地球を一変させ、奇跡的に生命を誕生させる原動力となったと考えられる短鎖ペプチドが「動」であるという根拠を、その分子構造から説明したい。 最初に、短鎖ペプチドの結合様式であるペプチド結合について少し述べておく。ペプチド結合は、アミノ酸のカルボキシル基と次のアミノ基が脱水縮合して生じたアミド共有結合という部分的に二重結合性を帯び、平面構造という独特の結合様式である。この平面構造は比較的堅い構造をも... 続きを読むにほんブログ村
2020年3月17日 / 最終更新日時 : 2020年5月11日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 7.短鎖ペプチド鎖の結合能 短鎖ペプチドの重要な機能の一つは、他の短鎖ペプチドや多くの有機物質と特殊な結合する能力をもつであろうということである。この結合能力こそが、私が短鎖ペプチドが生命を誕生させた原動力の根拠になっているのである。そこで、この短鎖ペプチドの結合能について、しばらく述べることにする。 短鎖ペプチドに備わる「特殊な結合能」 どのような物質でも単独で存在することはなく、絶えず周りの物質と結合して相互に影響し合... 続きを読むにほんブログ村
2020年3月17日 / 最終更新日時 : 2020年4月6日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 8.非共有結合 原子・分子間の結合には大別して強い結合と弱い結合の二種類がある。物質間の結合で最も強いものは共有結合で、タンパク質の場合、ペプチド結合のみが共有結合であり、その直鎖構造は安定しており、それを分解するには外部から相対的に高いエネルギーを与えなければならない。ペプチドやタンパク質では共有結合は二次構造や立体構造の主鎖骨格の形成に関係している。 一方、弱い結合は非共有結合で、少し引っ張るとすぐ離れてしま... 続きを読むにほんブログ村
2020年3月17日 / 最終更新日時 : 2020年4月26日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 9.短鎖ペプチドと物質との選択的結合 二つの結合要件 まず、短鎖ペプチドと物質との選択的な結合について考えてみたい。先に述べたように、アミノ酸残基が十数個以下の短鎖ペプチドは揺らぎが生じ、複数の遷移構造になることが明らかにされている。それは、その骨格構造の回転の自由度が大きいことと、安定状態や準安定状態の自由エネルギー値にあまり差がないからである。このような、複数の構造をもつ同じアミノ酸配列の短鎖ペプチドが対象物質と結合... 続きを読むにほんブログ村
2020年3月18日 / 最終更新日時 : 2020年4月6日 Hiroshi Masuda 第1部 原始無生物環境における化学進化 10.短鎖ペプチド複合体の形成 結合する相手はすべての有機物質が対象になるが、その中には他の短鎖ペプチドも当然含まれており、この場合に限って考えてみよう。二つの短鎖ペプチドが特異的に会合すると、短鎖ペプチドの複合体が形成されることになる。さらに、その複合体を中核にして、さらに別の短鎖ペプチドが会合し、その数を増やしていくと大きな複合体を形成すると考えられる。私は、その過程で複合体の内部構造の共有結合や非共有結合の再編が繰り返え... 続きを読むにほんブログ村